

# **EcoTrawl – CFD-analysis**

## Prepared for ECO Trawls

Client reference: Mads Bjørnenak

Report number: CFDM-report-001-2020 author: Hans Jørgen Bjelke Mørch

Tvedestrand, May 2020



## 1. Contents

| 1. | Summary                                       | 2  |
|----|-----------------------------------------------|----|
| 2. | Design basis                                  | 2  |
| 3. | Propeller test series                         | 4  |
| 4. | Maneuvering coeffecients                      | 7  |
| 5. | Dynamic stability                             | 12 |
| 6. | Conventional trawl door                       | 14 |
| 7. | Comparison of necessary power during trawling | 16 |
| 8. | Conclusions                                   | 17 |

#### **CFD Marine AS**

Nyvei 37, 4900 Tvedestrand, Norway

Phone: +47 90510536 E-mail: mail@cfdmarine.com

Enterprise no.: NO 992 842 881MVA



#### 1. Summary

The ECO Trawl, a self-propelled unit to replace conventional trawl doors, has been optimized with respect to efficiency under trawling conditions, using CFD-analysis. A parametric 3D cad-model was developed, using two contra-rotating propellers inside a duct. The propeller diameter, number of blades, blade area ratio and pitch could be varied.

For the chosen configuration hydrodynamic derivatives determined were through numerical Planar Motion Motions tests, in order to assess and controllability of the unit. The system show straight line stability for a moderately sized rudder.

A conventional trawl door was investigated under the same trawling conditions for comparison of necessary power. Power saving of 30 % during trawling can be expected.

## 2. Design basis

The chosen trawling speed was 4 knots.

Necessary thrust from each of the two EcoTrawl units is estimated to be 107781 N, which is half the drag of the trawl, plus the resistance of wire between the unit and the trawl, and finally half the resistance of the umbilical between the fishing vessel and the EcoTrawl unit.

Necessary side force from each EcoTrawl unit was estimated to be 21556 N, in order maintain an angle of 11.31 degrees of the trawl wire relative to forward direction. For comparison, a conventional trawl door would need twice this side force to maintain the same angle.

It is assumed that external forces from the trawl wire and the drag on the umbilical from the fishing vessel, act through the center of gravity. This requires an appropriate mechanism.

| Table 1. Characteristi | cs of chosen | configuration |
|------------------------|--------------|---------------|
|------------------------|--------------|---------------|

| Propelller diameter (m)              | 3.0                                                        |
|--------------------------------------|------------------------------------------------------------|
| Number of blades                     | 3                                                          |
| Blade area ratio, EAR                | 0.25                                                       |
| Volume (m^3)                         | 8.57                                                       |
| Assumed mass properties              |                                                            |
| Mass (kg)                            | 8975                                                       |
| Centre of gravity at origin          |                                                            |
| Radii of Gyration                    | [1.561 m, 1.391 m, 1.391 m]                                |
| Condition during trawling at 4 knots | ; drift angle 5.655 deg, reference condition for PMM tests |
|                                      |                                                            |

rpm\_fwdProp rpm\_aftProp [X\_tot (N) FY (N) omega\_fwd omega\_aft Torque\_fwdProp (Nm) Torque\_AftProp (Nm) PD\_fwdProp (Nm) PD\_ftyrop (W) PD\_aftProp (W) PD\_tot (W) PE (W) Etta tot 98 91 106729 20310 10.26 9.53 -21868 22660 224424 215934 440358 219624 0.50





Figure 1. The ECO trawl unit, chosen configuration with respect to diameter and propellers. Necessary rudders will be smaller than indicated by the large rudder of 3m span, which has been shown to give straight line stability by a good margin. The centre of origin is between forward and aft propellers, z-axis positive up, x-axis positive forward along the center line.



## 3. Propeller test series

Two contra-rotating propellers inside a nozzle was chosen for the necessary thrust at trawling speed and minimizing the resulting roll moment from the propellers.

In order to cancel the roll moment from the propellers, the tests were run with a specified rate of revolutions of the forward propeller. The resulting torque of the forward propeller was applied on the aft propeller, giving typically rate of revolutions 9 % less than that of the forward propeller.

The Wageningen Ka series was used for propeller geometry. The duct was nozzle 19A. The propeller diameters were 0.99, and duct length 0.85, relative to the inner diameter of the duct. Standard NACA-profiles were used for the struts and control surfaces.



Figure 2. The ECO Trawl with three- and eight-bladed propellers.

For 3 m diameter (nozzle inner diameter) results from variation of number of propeller blades and blade area ratio are given in table 2 and figure 3. The rate of revolutions of the forward propeller was 100 rpm, and the pitch ratio of the propellers, P/D, were 1.25.

The efficiency, etta\_tot, is defined by:  $etta_{tot} = \frac{T_{tot}}{Q_{fwdProp} \ \omega_{fwdProp} + Q_{aftProp} \ \omega_{aftProp}}$ 

Ideal efficiencies based the on the nozzle inner diameter of 3 m, are included in the table for comparison. The best result was obtained for blade area ratio, EAR=0.25 and number of blades, z=3, with efficiency, etta\_tot, equal to 0.50. The corresponding ideal efficiency is 0.51. Taking into account the outer dimeter of the nozzle, the ideal efficiency would be 0.61.



| rpm_fwdProp | z | EAR  | rpm_aftProp | Ct    | Etta_I | Etta_tot | Thrust_tot (N) | Roll Moment (N) | Thrust_Nozzle (N) | Thrust_FwdProp (N) | Thrust_AftProp (N) | Torque_FwdProp (Nm) | Torque_AftProp (Nm) |
|-------------|---|------|-------------|-------|--------|----------|----------------|-----------------|-------------------|--------------------|--------------------|---------------------|---------------------|
| 100         | 3 | 0.25 | -93.6       | 7.40  | 0.51   | 0.50     | 113552         | 2568            | 36050             | 39353              | 39094              | -23250              | 23214               |
| 100         | 3 | 0.5  | -94.5       | 6.72  | 0.53   | 0.49     | 103198         | 2687            | 32231             | 36075              | 35754              | -21176              | 21179               |
| 100         | 3 | 0.75 | -96.4       | 5.58  | 0.56   | 0.46     | 85661          | 2615            | 24561             | 31584              | 30217              | -18673              | 18427               |
| 100         | 3 | 1    | -97.4       | 4.65  | 0.59   | 0.38     | 71426          | 2525            | 16099             | 28638              | 27234              | -19240              | 18572               |
| 100         | 4 | 0.25 | -92.6       | 8.06  | 0.50   | 0.48     | 123823         | 2430            | 39503             | 42823              | 42396              | -26247              | 26239               |
| 100         | 4 | 0.5  | -93.6       | 7.66  | 0.51   | 0.48     | 117656         | 2466            | 37619             | 40576              | 40356              | -24945              | 24887               |
| 100         | 4 | 0.75 | -95.5       | 6.67  | 0.53   | 0.47     | 102392         | 2572            | 31666             | 36128              | 35344              | -22031              | 21926               |
| 100         | 4 | 1    | -97.4       | 5.68  | 0.56   | 0.43     | 87187          | 2777            | 24954             | 31819              | 31030              | -19927              | 20020               |
| 100         | 5 | 0.25 | -92.6       | 8.75  | 0.49   | 0.46     | 134313         | 2245            | 43130             | 46437              | 45566              | -29507              | 29523               |
| 100         | 5 | 0.5  | -92.6       | 8.34  | 0.49   | 0.47     | 127974         | 2172            | 41572             | 43807              | 43491              | -27844              | 27844               |
| 100         | 5 | 0.75 | -94.5       | 7.43  | 0.51   | 0.46     | 114017         | 2405            | 36431             | 39383              | 38982              | -24898              | 24939               |
| 100         | 5 | 1    | -95.5       | 6.48  | 0.54   | 0.45     | 99556          | 2574            | 30487             | 35275              | 34441              | -22386              | 22474               |
| 100         | 6 | 0.25 | -91.7       | 9.38  | 0.47   | 0.45     | 143958         | 1975            | 46105             | 49970              | 48714              | -32870              | 32916               |
| 100         | 6 | 0.5  | -93.6       | 8.86  | 0.48   | 0.45     | 136035         | 2070            | 44507             | 46414              | 45977              | -30401              | 30452               |
| 100         | 6 | 0.75 | -94.5       | 8.02  | 0.50   | 0.45     | 123194         | 2196            | 39837             | 42353              | 41795              | -27635              | 27624               |
| 100         | 6 | 1    | -94.5       | 7.14  | 0.52   | 0.44     | 109616         | 2309            | 34539             | 38402              | 37367              | -25036              | 24989               |
| 100         | 7 | 0.25 | -91.7       | 9.85  | 0.47   | 0.43     | 151214         | 1687            | 48335             | 52783              | 51039              | -35829              | 35878               |
| 100         | 7 | 0.5  | -92.6       | 9.33  | 0.47   | 0.44     | 143223         | 1983            | 47088             | 48864              | 48133              | -33023              | 33044               |
| 100         | 7 | 0.75 | -93.6       | 8.50  | 0.49   | 0.44     | 130558         | 2040            | 42498             | 44774              | 44074              | -30079              | 30065               |
| 100         | 7 | 1    | -94.5       | 7.65  | 0.51   | 0.43     | 117468         | 2204            | 37538             | 40768              | 39870              | -27372              | 27377               |
| 100         | 8 | 0.25 | -91.7       | 10.53 | 0.45   | 0.41     | 161741         | 1583            | 50929             | 56915              | 54792              | -40011              | 40088               |
| 100         | 8 | 0.5  | -92.6       | 9.77  | 0.47   | 0.43     | 149984         | 1913            | 49190             | 51416              | 50208              | -35823              | 35852               |
| 100         | 8 | 0.75 | -92.6       | 8.89  | 0.48   | 0.43     | 136447         | 1902            | 44655             | 46721              | 45890              | -32334              | 32337               |
| 100         | 8 | 1    | -93.6       | 8.06  | 0.50   | 0.42     | 123803         | 2065            | 39896             | 42788              | 41853              | -29558              | 29589               |

| Table 2. | Variation of number of blades and blade area ratio. |
|----------|-----------------------------------------------------|
| D = 3 m  | P/D = 1.25, rpm_fwdProp=100.                        |



Figure 3. Variation of efficiency with number of blades (z) and blade area ratio (EAR). D = 3 m, P/D = 1.25, rpm\_fwdProp=100.

Results for the chosen configuration with z=3, EAR=0.25 and P/D=1.25 are given in table 3. At rpm\_fwProp = 100 and rpm\_aftProp=91.7, the total thrust equals the required thrust. For further optimization, different pitch ratios should be studied.

Thrust and torque coefficients are given in figure 4.



#### Table 3. Variation of rpm for z=3, D=3 m, EAR=0.25 and P/D=1.25

| rpm_fwdPro | p rpm_aftProp | Ct   | Etta_I | Etta_tot | Thrust_tot (N) | Roll Moment (N) | Thrust_Nozzle (N) | Thrust_FwdProp (N) | Thrust_AftProp (N) | Torque_FwdProp (Nm) | Torque_AftProp (Nm) | J      | KT_tot | 10*KQ_tot |
|------------|---------------|------|--------|----------|----------------|-----------------|-------------------|--------------------|--------------------|---------------------|---------------------|--------|--------|-----------|
| 90.0       | -84.0         | 5.66 | 0.56   | 0.53     | 86867          | 1834            | 25609             | 31167              | 30901              | -18505              | 18485               | 0.4573 | 0.4646 | 0.6595    |
| 92.0       | -85.9         | 5.99 | 0.55   | 0.52     | 91930          | 1906            | 27574             | 32737              | 32451              | -19411              | 19387               | 0.4473 | 0.4705 | 0.6620    |
| 94.0       | -87.9         | 6.33 | 0.54   | 0.52     | 97145          | 1983            | 29612             | 34343              | 34046              | -20338              | 20313               | 0.4378 | 0.4763 | 0.6644    |
| 96.0       | -90.7         | 6.68 | 0.53   | 0.51     | 102498         | 2056            | 31725             | 35983              | 35669              | -21284              | 21258               | 0.4287 | 0.4818 | 0.6666    |
| 98.0       | -91.7         | 7.03 | 0.52   | 0.50     | 107997         | 2131            | 33913             | 37655              | 37333              | -22248              | 22223               | 0.4200 | 0.4872 | 0.6687    |
| 100.0      | -93.6         | 7.40 | 0.51   | 0.50     | 113631         | 2209            | 36173             | 39362              | 39024              | -23233              | 23206               | 0.4116 | 0.4923 | 0.6706    |
| 102.0      | -95.5         | 7.78 | 0.50   | 0.49     | 119409         | 2289            | 38509             | 41103              | 40751              | -24237              | 24208               | 0.4035 | 0.4972 | 0.6724    |
| 104.0      | -96.4         | 8.16 | 0.50   | 0.49     | 125333         | 2366            | 40914             | 42882              | 42516              | -25263              | 25232               | 0.3957 | 0.5020 | 0.6742    |
| 106.0      | -98.4         | 8.56 | 0.49   | 0.48     | 131394         | 2448            | 43402             | 44690              | 44307              | -26305              | 26273               | 0.3883 | 0.5066 | 0.6757    |
| 108.0      | -101.2        | 8.96 | 0.48   | 0.47     | 137600         | 2534            | 45959             | 46534              | 46139              | -27368              | 27337               | 0.3811 | 0.5111 | 0.6773    |
| 110.0      | -103.1        | 9.38 | 0.47   | 0.47     | 143947         | 2618            | 48592             | 48412              | 48001              | -28451              | 28418               | 0.3741 | 0.5154 | 0.6787    |



Figure 4. Propeller coefficients (based on rpm\_fwdprop) for the ECO Trawl unit for z=3, D = 3 m, EAR=0.25 and P/D=1.25.



#### 4. Maneuvering coeffecients

CFD-analysis with forced sway and yaw motion, equivalent to PMM tests, were carried out in order to find the manuevering coefficients of the EcoTrawl unit, and to assess whether it is stable and controllable when operating in trawling condition. The optimum configuration, with z=3 and EAR=0.25, from the propeller test series was investigated.

Forward speed was constant 2.06 m/s. This was first done at a drift angle of 5.655 degrees, for necessary side force, with the propellers rotating at 98 and 91 rpm respectively, ref. table 1. The control surfaces were removed. Fourier analysis of hull forces and moments, with resulting manuevering coefficients are given in table 4. The idea was to calculate the necessary rudder area and position from lifting line theory, to achieve straight line stability.

For verification a second set of tests were carried at zero drift angle, with and without rudder, see table 5. The 3 m span rudder shown in figure 1 was used. The propellers were represented by actuator discs with corresponding thrust from the condition above.

Motion in a plane defined by positions of the EcoTrawl unit relative to the trawl is considered. For reference, see [1] and [2].

The ITTC (International Towing Tank Conference) standard notation has been used.

The general linear manuevering model is given by:

$$\begin{split} & \dot{m\dot{u}} = X_{\dot{u}}u \\ m(\dot{v} + ur + \dot{r}x_G) = Y_{\dot{v}}\dot{v} + Y_{\dot{r}}\dot{r} + Y_vv + Y_rr + Y_\delta\delta \quad (1) \\ & I_{zz}\dot{r} + mx_G(\dot{v} + ur) = N_{\dot{v}}\dot{v} + N_{\dot{r}}\dot{r} + N_vv + N_rr + N_\delta\delta \end{split}$$

here

 $\dot{u} = 0$  and  $\delta = 0$ 

External sway force and yaw moment becomes:

$$Y = (m - Y_{\dot{v}})\dot{v} + (mx_G - Y_{\dot{r}})\dot{r} - Y_vv + (mu - Y_r)r \quad (2)$$
$$N = (mx_G - N_{\dot{v}})\dot{v} + (I_{zz} - N_{\dot{r}})\dot{r} - N_vv + (mx_Gu - N_r)r$$

By assuming that CG is in the origin we get

$$Y = (m - Y_{\dot{v}})\dot{v} - Y_{\dot{r}}\dot{r} - Y_{v}v + (mu - Y_{r})r \quad (3)$$
$$N = -N_{\dot{v}}\dot{v} + (I_{zz} - N_{\dot{r}})\dot{r} - N_{v}v - N_{r}r$$

Furthermore, the mass and moment of inertia was zero in the cfd-analysis with force sway and yaw motion. Hence, the external forces become:

$$Y = -Y_{\dot{v}}\dot{v} - Y_{\dot{r}}\dot{r} - Y_{v}v - Y_{r}r \quad (4)$$
$$N = -N_{\dot{v}}\dot{v} - N_{\dot{r}}\dot{r} - N_{v}v - N_{r}r$$



<u>The resulting sway force and yaw moment on the hull</u> from the flow due to pressure and shear forces are:

$$Y_{H} = Y_{\dot{v}}\dot{v} + Y_{\dot{r}}\dot{r} + Y_{v}v + Y_{r}r \quad (5)$$
$$N_{H} = N_{\dot{v}}\dot{v} + N_{\dot{r}}\dot{r} + N_{v}v + N_{r}r$$

Pure sway

$$Y_H = Y_{\dot{v}}\dot{v} + Y_vv \quad (6)$$
$$N_H = N_{\dot{v}}\dot{v} + N_vv$$

Pure yaw

$$Y_H = Y_{\dot{r}}\dot{r} + Y_r r \quad (7)$$
$$N_H = N_{\dot{r}}\dot{r} + N_r r$$

The sway and yaw motion are given by

Sway motion:

$$y = a_0 \sin \omega t \quad (8)$$
$$\dot{y} = v = a_0 \omega \cos \omega t$$
$$\ddot{y} = \dot{v} = -a_0 \omega^2 \sin \omega t$$

Yaw motion:

$$\varphi = \varphi_0 \cos \omega t, \ y = a_0 \sin \omega t \quad (9)$$
$$\dot{\varphi} = r = -\varphi_0 \omega \sin \omega t$$
$$\ddot{\varphi} = \dot{r} = -\varphi_0 \omega^2 \cos \omega t$$

with

$$\varphi_0 = \frac{a_0 \omega}{U}$$

The yaw motion is a combination of sway and yaw in the global system, which gives zero sway velocity in the hull coordinate system, ie pure yaw.

Forces and moments are expressed in a local coordinate system following the sway and yaw motion, ie offset from hull fixed coordinate system by the drift angle. The coefficients are obtained by separating the part of the force and moment in phase with the motion and the part out of phase, through Fourier analysis.



For pure sway the hull forces become:

$$Y_{H} = Y_{\dot{v}}(-a_{0}\omega^{2}sin\omega t) + Y_{v}a_{0}\omega cos\omega t \quad (10)$$
$$N_{H} = N_{\dot{v}}(-a_{0}\omega^{2}sin\omega t) + N_{v}a_{0}\omega cos\omega t$$

and the manuevering coefficients are given by:

$$Y_{\dot{v}} = -\frac{Y_{H\,in\,phase}}{a_0\omega^2}, \ N_{\dot{v}} = -\frac{N_{H\,in\,phase}}{a_0\omega^2}$$
(11)  
$$Y_{v} = \frac{Y_{H\,out\,of\,phase}}{a_0\omega}, \qquad N_{v} = \frac{N_{H\,out\,of\,phase}}{a_0\omega}$$

Similarly for pure yaw:

$$Y_{H} = Y_{\dot{r}}(-\varphi_{0}\omega^{2}cos\omega t) + Y_{r}(-\varphi_{0}\omega sin\omega t)$$
(12)  
$$N_{H} = N_{\dot{r}}(-\varphi_{0}\omega^{2}cos\omega t) + N_{r}(-\varphi_{0}\omega sin\omega t)$$

$$Y_{\dot{r}} = -\frac{Y_{H \text{ in phase}}}{\varphi_{0}\omega^{2}}, \ N_{\dot{r}} = -\frac{N_{H \text{ in phase}}}{\varphi_{0}\omega^{2}}$$
(13)  
$$Y_{r} = -\frac{Y_{H \text{ out of phase}}}{\varphi_{0}\omega}, \qquad N_{r} = -\frac{N_{H \text{ out of phase}}}{\varphi_{0}\omega}$$



Table 4. Manuevering coefficients from tests with running propellers at drift angle 5.655 deg.

| PURE SWAY    |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
|--------------|---------------|-------------------|---------------------|------------|-------------------|--------|-------------------|---------------------|------------|-------------------|--------|
|              |               | Sway velocity (m  | /s)                 |            |                   |        | Sway acceleration | n (m/s^2)           |            |                   |        |
|              |               | fSwayVel(x) = a0  | ) + a1*cos(x*w) + b | 1*sin(x*w) |                   |        | fSwayAcc(x) = a0  | + a1*cos(x*w) + b1  | L*sin(x*w) |                   |        |
| Period (s)   | Ω             | a0                | a1                  |            | b1                |        | a0                | a1                  |            | b1                |        |
| 2.000        | 3.142         | 0.000             | 0.785               |            | 0.000             |        | 0.000             | 0.013               |            | -2.467            |        |
| 4.000        | 1.571         | 0.000             | 0.393               |            | 0.000             |        | 0.000             | 0.002               |            | -0.617            |        |
| 6.000        | 1.047         | 0.000             | 0.262               |            | 0.000             |        | 0.000             | 0.000               |            | -0.274            |        |
| 8.000        | 0.785         | 0.000             | 0.196               |            | 0.000             |        | 0.000             | 0.000               |            | -0.154            |        |
|              |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
|              |               | Sway force, FY (M | 4)                  |            |                   |        | Yaw moment, MZ    | 2 (Nm)              |            |                   |        |
|              |               | fMZ(x) = a0 + a1* | 'cos(x*w) + b1*sin( | x*w)       |                   |        | fMZ(x) = a0 + a1* | cos(x*w) + b1*sin(  | x*w)       |                   |        |
| Sway amp (m) | Yaw amp (rad) | a0                | a1 (out of phase)   | Y_v        | b1 (in phase)     | Y_vdot | a0                | a1 (out of phase)   | N_v        | b1 (in phase)     | N_vdot |
| 0.250        | 0.000         | 20080             | -40580              | -51668     | 55870             | -22647 | 11690             | -45040              | -57347     | 2102              | -852   |
| 0.250        | 0.000         | 20030             | -19560              | -49809     | 14540             | -23573 | 11590             | -22980              | -58518     | 501               | -812   |
| 0.250        | 0.000         | 19970             | -13100              | -50038     | 6482              | -23640 | 11500             | -15340              | -58594     | 196               | -716   |
| 0.250        | 0.000         | 19940             | -9879               | -50326     | 3602              | -23359 | 11460             | -11490              | -58533     | 83                | -540   |
|              |               |                   | Y_v =               | -50460     | Y_vdot =          | -23305 |                   | N_v =               | -58248     | N_vdot =          | -730   |
|              |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
|              |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
| PURE YAW     |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
|              |               | Yaw velocity (rac | i/s)                |            |                   |        | Yaw acceleration  | (rad/s^2)           |            |                   |        |
|              |               | fYawVel(x) = a0   | + a1*cos(x*w) + b1  | *sin(x*w)  |                   |        | fYawAcc(x) = a0+  | - a1*cos(x*w) + b1* | ʻsin(x*w)  |                   |        |
| Period (s)   | Ω             | a0                | a1                  |            | b1                |        | a0                | a1                  |            | b1                |        |
| 2.000        | 3.142         | 0.000             | 0.000               |            | -1.144            |        | 0.000             | -3.595              |            | -0.019            |        |
| 4.000        | 1.571         | 0.000             | 0.000               |            | -0.296            |        | 0.000             | -0.465              |            | -0.001            |        |
| 6.000        | 1.047         | 0.000             | 0.000               |            | -0.132            |        | 0.000             | -0.139              |            | 0.000             |        |
| 8.000        | 0.785         | 0.000             | 0.000               |            | -0.075            |        | 0.000             | -0.059              |            | 0.000             |        |
|              |               |                   |                     |            |                   |        |                   |                     |            |                   |        |
|              |               | Sway force, FY (N | 4)                  |            |                   |        | Yaw moment, M2    | 2 (Nm)              |            |                   |        |
|              |               | fMZ(x) = a0 + a1* | cos(x*w) + b1*sin(  | x*w)       |                   |        | fMZ(x) = a0 + a1* | cos(x*w) + b1*sin(  | x*w)       |                   |        |
| Sway amp (m) | Yaw amp (rad) | a0                | a1 (in phase)       | Y_rdot     | b1 (out of phase) | Y_r    | a0                | a1 (in phase)       | N_rdot     | b1 (out of phase) | N_r    |
| 0.250        | 0.382         | 22330             | 11930               | -3318      | -108700           | -95017 | 10820             | 55900               | -15549     | 100100            | -87500 |
| 0.250        | 0.191         | 20140             | 2452                | -5275      | -27950            | -94458 | 11520             | 7531                | -16203     | 23280             | -78675 |
| 0.250        | 0.127         | 20010             | 1021                | -7367      | -12640            | -95468 | 11430             | 2113                | -15245     | 10190             | -76964 |
| 0.250        | 0.095         | 19960             | 496                 | -8454      | -7192             | -96369 | 11410             | 857                 | -14611     | 5688              | -76216 |
|              |               |                   | Y rdot =            | -6104      | Yr=               | -95328 |                   | N rdot =            | -15402     | Nr=               | -79839 |

Table 5. Manuevering coefficients from tests with actuator disc and zero drift angle.

| PURE SWAY    |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
|--------------|---------------|-------------------|---------------------|-------------|-------------------|-------------|-------------------|---------------------|------------|-------------------|-------------|
|              |               | Sway velocity (m  | n/s)                |             |                   |             | Sway acceleratio  | n (m/s^2)           |            |                   |             |
|              |               | fSwayVel(x) = a0  | ) + a1*cos(x*w) + b | 1*sin(x*w)  |                   |             | fSwayAcc(x) = a0  | + a1*cos(x*w) + b1  | L*sin(x*w) |                   |             |
| Period (s)   | Ω             | a0                | a1                  |             | b1                |             | a0                | a1                  |            | b1                |             |
| 8.000        | 0.785         | 0.000             | 0.196               |             | 0.000             |             | 0.000             | 0.000               |            | -0.154            |             |
|              |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
|              |               | Sway force, FY (  | N)                  |             |                   |             | Yaw moment, Ma    | Z (Nm)              |            |                   |             |
|              |               | fMZ(x) = a0 + a1* | *cos(x*w) + b1*sin( | x*w)        |                   |             | fMZ(x) = a0 + a1* | cos(x*w) + b1*sin(x | x*w)       |                   |             |
| Sway amp (m) | Yaw amp (rad) | a0                | a1 (out of phase)   | Y_v         | b1 (in phase)     | Y_vdot      | a0                | a1 (out of phase)   | N_v        | b1 (in phase)     | N_vdot      |
| No rudder    |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| 0.250        | 0.000         | 46                | -10160              | -51758      | 2991              | -19397      | -189              | -15090              | -76872     | 694               | -4501       |
| With rudder  |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| 0.250        | 0.000         | -48               | -12100              | -61640      | 6296              | -40830      | 55                | -7812               | -39796     | -11160            | 72374       |
|              |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| PURE YAW     |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
|              |               | Yaw velocity (rad | d/s)                |             |                   |             | Yaw acceleration  | (rad/s^2)           |            |                   |             |
|              |               | fYawVel(x) = a0   | + a1*cos(x*w) + b1  | *sin(x*w)   |                   |             | fYawAcc(x) = a0+  | + a1*cos(x*w) + b1* | ʻsin(x*w)  |                   |             |
| Period (s)   | Ω             | a0                | a1                  |             | b1                |             | a0                | a1                  |            | b1                |             |
| 8.000        | 0.785         | 0.000             | 0.000               |             | -0.075            |             | 0.000             | -0.059              |            | 0.000             |             |
|              |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
|              |               | Sway force, FY (  | N)                  |             |                   |             | Yaw moment, Ma    | Z (Nm)              |            |                   |             |
|              |               | fMZ(x) = a0 + a1  | *cos(x*w) + b1*sin( | x*w)        |                   |             | fMZ(x) = a0 + a1* | cos(x*w) + b1*sin(x | x*w)       |                   |             |
| Sway amp (m) | Yaw amp (rad) | a0                | a1 (in phase)       | Y_rdot      | b1 (out of phase) | Y_r         | a0                | a1 (in phase)       | N_rdot     | b1 (out of phase) | N_r         |
| Norudder     |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| 0.250        | 0.095         | -40               | 614.8               | -10487.888  | -6795             | -91049.176  | 29                | 1293                | -22057.318 | 2899              | -38844.969  |
|              |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| With rudder  |               |                   |                     |             |                   |             |                   |                     |            |                   |             |
| 0.250        | 0.095         | -39               | 6846                | -116786.080 | -16060            | -215194.962 | 43                | 964                 | -16446.605 | 37980             | -508910.626 |





Figure 5.Tests with running propellers at drift angle 5.655 deg. Pure sway top left, pure yaw bottom right, T=4 s.



Figure 6. Tests with actuator disc and rudder at zero drift angle. Pure sway top left, pure yaw bottom right, T=8 s



## 5. Dynamic stability

A vessel that maintains a straight course after a disturbance with the rudder(s) fixed at zero angle, is said to have straight line stability. This is strictly not necessary. However, the vessel will need to have directional stability in order to be controllable. This means that the vessel, through use of the rudder(s), is able to maintain the original direction after a disturbance.

A vessel with straight line stability does also have directional stability.

From (1)

$$(m - Y_{\dot{v}})\dot{v} + (mx_G - Y_{\dot{r}})\dot{r} - Y_vv + (mu - Y_r)r = Y_\delta\delta \quad (14)$$
$$(mx_G - N_{\dot{v}})\dot{v} + (I_{zz} - N_{\dot{r}})\dot{r} - N_vv + (mx_Gu - N_r)r = N_\delta\delta$$

The instantaneous rudder angle is expressed by  $\delta = k_1 r + k_2 \varphi$ , where  $\varphi$  is the course deviation and *r* the yaw rate.

The sway dependence in (14) can be removed by combining the sway and yaw equations resulting in one higher order differential equation for yaw. For stick fixed,  $\delta = 0$ , we get a homogeneous second order equation:

$$(AD^{2} + BD + C)r = 0, \text{ with } D = \frac{d}{dt} \quad (15)$$

$$A = (N_{\dot{r}} - I_{ZZ})(Y_{\dot{v}} - m) - (Y_{\dot{r}} - mx_{G})(N_{\dot{v}} - mx_{G})$$

$$B = (N_{\dot{r}} - I_{ZZ})Y_{v} + (N_{r} - mx_{G}u)(Y_{\dot{v}} - m) - (Y_{\dot{r}} - mx_{G})N_{v} - (Y_{r} - mu)(N_{\dot{v}} - mx_{G})$$

$$C = (N_{r} - mx_{G}u)Y_{v} - (Y_{r} - mu)N_{v}$$

With the solution

$$r = C_{r_1} e^{\sigma_1} t + C_{r_2} e^{\sigma_2} t$$
$$\sigma_{1,2} = \frac{1}{2} \left( -\frac{B}{A} \pm \sqrt{\left(\frac{B}{A}\right)^2 - 4\frac{C}{A}} \right)$$

The real parts of  $\sigma_{1,2}$  have to be negative for disturbance to die out with time. It can be shown that they are negative for C > 0, or:

$$l_{v} \equiv \frac{N_{v}}{Y_{v}} < \frac{N_{r} - mx_{G}u}{Y_{r} - mu} \equiv l_{r}$$

This means that straight line stability is obtained when the point of application of yaw force is forward of the point of application of sway force.



Results are given in table 6. Estimated effect of rudders are also included. Lifting line theory with elliptic lift distribution has been used to estimate effect on damping. Added mass of a corresponding cylinder has used for correction of acceleration terms. The effect increased speed in propeller slipstream was on lift was not considered.

| Point of application sway and yaw forces (m)                          | $l_{\nu} \equiv \frac{N_{\nu}}{Y_{\nu}}$ | $\frac{N_{r-}mx_{G}u}{Y_{r}-mu} \equiv l_{r}$ |
|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|
| Running propellers at drift angle 5.655 deg, no rudder                | 1.154                                    | 0.701                                         |
| Running propellers at drift angle 5.655 deg,                          | 0.268                                    | 1.274                                         |
| Estimated effect of 3 m span / 1 m chord rudder, at 3.75 m aft of CG  |                                          |                                               |
| Running propellers at drift angle 5.655 deg,                          | 0.851                                    | 0.862                                         |
| Estimated effect of 1.5 m span / 1 m chord rudder, at 3.0 m aft of CG |                                          |                                               |
| Actuator disc, zero drift angle, no rudder                            | 1.485                                    | 0.355                                         |
| Actuator disc, zero drift angle,                                      | 0.646                                    | 2.178                                         |
| 3 m span rudder at 3.75 m aft of CG, ref. fig 1.                      |                                          |                                               |

#### Table 6. Straight line stability

Without rudder the EcoTrawl unit is unstable. The tested 3 m span rudder is more than adequate for straight line stability. The estimated effect of 1.5 m span rudder indicate that this is sufficient for straight line stability.



## 6. Conventional trawl door

Lift and drag with angle of attack are given in table 7 and figure 7 for a conventional trawl door at 4 knots. Figure 8 show the flow at 20 degrees angle of attack.

The trawl door had a span of 5 m and a chord of 2m. To achieve the necessary 2\*21556 N side force, the projected area has scaled by 1.2755, i.e. the scaled span equals 5.65m and the scaled chord equals 2.26 m.

| angle of attack (deg) | Drag (N) | Lift (N) | Drag_scaled (N) | Lift_scaled (N) |
|-----------------------|----------|----------|-----------------|-----------------|
| 0.0                   | 1.80E+03 | 1.41E+04 | 2.30E+03        | 1.80E+04        |
| 2.5                   | 2.24E+03 | 1.62E+04 | 2.86E+03        | 2.07E+04        |
| 5.0                   | 2.92E+03 | 1.95E+04 | 3.73E+03        | 2.49E+04        |
| 7.5                   | 3.63E+03 | 2.21E+04 | 4.63E+03        | 2.82E+04        |
| 10.0                  | 4.44E+03 | 2.48E+04 | 5.66E+03        | 3.17E+04        |
| 12.5                  | 5.34E+03 | 2.75E+04 | 6.81E+03        | 3.51E+04        |
| 14.0                  | 5.88E+03 | 2.89E+04 | 7.50E+03        | 3.69E+04        |
| 14.5                  | 6.03E+03 | 2.93E+04 | 7.70E+03        | 3.74E+04        |
| 15.0                  | 6.28E+03 | 2.99E+04 | 8.00E+03        | 3.82E+04        |
| 15.5                  | 6.46E+03 | 3.04E+04 | 8.24E+03        | 3.87E+04        |
| 16.0                  | 6.65E+03 | 3.08E+04 | 8.49E+03        | 3.93E+04        |
| 17.5                  | 7.23E+03 | 3.21E+04 | 9.22E+03        | 4.09E+04        |
| 18.5                  | 7.61E+03 | 3.29E+04 | 9.71E+03        | 4.19E+04        |
| 19.0                  | 7.74E+03 | 3.30E+04 | 9.87E+03        | 4.20E+04        |
| 19.5                  | 7.96E+03 | 3.33E+04 | 1.02E+04        | 4.25E+04        |
| 20.0                  | 8.22E+03 | 3.38E+04 | 1.05E+04        | 4.32E+04        |
| 20.5                  | 8.23E+03 | 3.35E+04 | 1.05E+04        | 4.27E+04        |
| 21.0                  | 8.17E+03 | 3.25E+04 | 1.04E+04        | 4.15E+04        |
| 21.5                  | 8.19E+03 | 3.14E+04 | 1.04E+04        | 4.00E+04        |
| 22.5                  | 8.40E+03 | 3.09E+04 | 1.07E+04        | 3.94E+04        |
| 25.0                  | 8.83E+03 | 2.85E+04 | 1.13E+04        | 3.64E+04        |

Table 7. Drag and lift (side force) of a conventional trawl door at 4 knots.



Figure 7.. Drag and lift (side force) of a conventional trawl door at 4 knots.





Figure 8. Conventional trawl door at 20 degrees angle of attack.



## 7. Comparison of necessary power during trawling

Comparisons of necessary power during trawling have been made between the use of EcoTrawl units and conventional trawl doors for trawl speed 4 knots. The comparisons are made with and without the effect of the estimated resistance of the fishing vessel and the umbilical / wire between the fishing vessel and EcoTrawl / trawl door. For simplicity ideal efficiency of propeller has been assumed for the fishing vessel.

#### **Conventional trawling**

| <u>Drag:</u>           |                |                            |
|------------------------|----------------|----------------------------|
| Drag of 2 trawl doors  | 5              | 2*10484 = 20968 (N)        |
| Total drag of trawl ar | nd wire        | 2*107781 = 215562 (N)      |
| Estimated hull resista | ance           | 40000 (N)                  |
|                        | Drag_total1 =  | = 276530 (N)               |
|                        | Drag_total2=   | 236530 (N)                 |
| Effective power:       |                |                            |
|                        | PE1 = 56903    | 7 (W)                      |
|                        | PE2 = 48672    | 6 (W)                      |
| Ideal efficiency for 3 | m diameter pro | opeller of fishing vessel: |
|                        | Etta_i1 = 0.37 | 74                         |
|                        | Etta_i2 = 0.39 | 98                         |
| Delivered power:       |                |                            |
|                        | PD1_conv =     | 1521489 (W) = 1521 (kW)    |
|                        | PD2_convc =    | : 1222930 (W) = 1223 (kW)  |
|                        |                |                            |
|                        |                |                            |
|                        |                |                            |



#### EcoTrawl

Delivered power 2\*EcoTrawl, ref. table 1 2\*441000 (W) = 882 (kW) = PD2\_EcoTrawl

| Fishing vessel                                                |               |
|---------------------------------------------------------------|---------------|
| Estimated hull resistance                                     | 40000 (N)     |
| Effective power                                               | 82311 (W)     |
| Ideal efficiency for 3 m diameter propeller of fishing vessel | Etta_i = 0.69 |
| Delivered power                                               | 119291 (W)    |
|                                                               |               |

PD1\_EcoTrawl = 1001 (kW)

PD2\_EcoTrawl = 882 (kW)

#### **Power comparison**

PD1\_EcoTrawl / PD1\_conv = 1001/1521 = 0.66

PD2\_EcoTrawl / PD2\_conv = 882/1223 = 0.72

## 8. Conclusions

- By using a combination of speed and torque control, the contra rotating propellers the heel moment on the EcoTrawl is eliminated.
- Straight line stability is achieved with a rudder of moderate size.
- A power saving of about 30 % can be expected during trawling when using the EcoTrawl units instead of conventional trawl doors.

Suggested further work:

- Development and testing of control algorithm and a full 6 degree of maneuvering model.
- Include effect of forces from trawl wire and umbilical
- Further propeller optimization